3.469 \(\int \frac{\tan ^{\frac{3}{2}}(c+d x) (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=155 \[ -\frac{B \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d \sqrt{-b+i a}}+\frac{2 B \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{b} d}-\frac{B \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d \sqrt{b+i a}} \]

[Out]

-((B*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d)) + (2*B*ArcTanh[(S
qrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[b]*d) - (B*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x
]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.200226, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 10, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {21, 3575, 910, 63, 217, 206, 912, 93, 205, 208} \[ -\frac{B \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d \sqrt{-b+i a}}+\frac{2 B \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{b} d}-\frac{B \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d \sqrt{b+i a}} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]^(3/2)*(a*B + b*B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

-((B*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d)) + (2*B*ArcTanh[(S
qrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[b]*d) - (B*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x
]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3575

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n)/(1 + ff^2*x^2), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 910

Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*((a_.) + (c_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegr
and[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), (d + e*x)^(m + 1/2)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &
& NeQ[c*d^2 + a*e^2, 0] && IGtQ[m + 1/2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 912

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegr
and[(d + e*x)^m*(f + g*x)^n, 1/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[c*d^2 + a*e^2,
 0] &&  !IntegerQ[m] &&  !IntegerQ[n]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^{\frac{3}{2}}(c+d x) (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx &=B \int \frac{\tan ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{B \operatorname{Subst}\left (\int \frac{x^{3/2}}{\sqrt{a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{B \operatorname{Subst}\left (\int \left (\frac{1}{\sqrt{x} \sqrt{a+b x}}-\frac{1}{\sqrt{x} \sqrt{a+b x} \left (1+x^2\right )}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{B \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{d}-\frac{B \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac{B \operatorname{Subst}\left (\int \left (\frac{i}{2 (i-x) \sqrt{x} \sqrt{a+b x}}+\frac{i}{2 \sqrt{x} (i+x) \sqrt{a+b x}}\right ) \, dx,x,\tan (c+d x)\right )}{d}+\frac{(2 B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=-\frac{(i B) \operatorname{Subst}\left (\int \frac{1}{(i-x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac{(i B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} (i+x) \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac{(2 B) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}\\ &=\frac{2 B \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{b} d}-\frac{(i B) \operatorname{Subst}\left (\int \frac{1}{i-(-a+i b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{(i B) \operatorname{Subst}\left (\int \frac{1}{i-(a+i b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}\\ &=-\frac{B \tan ^{-1}\left (\frac{\sqrt{i a-b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{i a-b} d}+\frac{2 B \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{b} d}-\frac{B \tanh ^{-1}\left (\frac{\sqrt{i a+b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{i a+b} d}\\ \end{align*}

Mathematica [A]  time = 0.902044, size = 193, normalized size = 1.25 \[ \frac{B \left (\frac{(-1)^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{-a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{-a-i b}}+\frac{(-1)^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\sqrt{a-i b}}+\frac{2 \sqrt{a} \sqrt{\frac{b \tan (c+d x)}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b} \sqrt{a+b \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]^(3/2)*(a*B + b*B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(B*(((-1)^(3/4)*ArcTanh[((-1)^(1/4)*Sqrt[-a - I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[-a - I*
b] + ((-1)^(3/4)*ArcTanh[((-1)^(1/4)*Sqrt[a - I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a - I*b
] + (2*Sqrt[a]*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + (b*Tan[c + d*x])/a])/(Sqrt[b]*Sqrt[a + b
*Tan[c + d*x]])))/d

________________________________________________________________________________________

Maple [B]  time = 0.572, size = 943902, normalized size = 6089.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \tan \left (d x + c\right ) + B a\right )} \tan \left (d x + c\right )^{\frac{3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*b*tan(d*x + c) + B*a)*tan(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} B \int \frac{\tan ^{\frac{3}{2}}{\left (c + d x \right )}}{\sqrt{a + b \tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)

[Out]

B*Integral(tan(c + d*x)**(3/2)/sqrt(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out